285-codes/numeric.py

95 lines
2.6 KiB
Python
Raw Normal View History

import numpy as np
import matplotlib.pyplot as plt
threshold = 100
2025-06-01 21:05:24 +08:00
def RK4(y0, t):
ODE = lambda t, y: t**3 + y**3
#note: t is a vector of time points, y0 is the initial value
steps = len(t)
y = np.zeros(steps)
h = (t[-1] - t[0]) / (steps - 1)
if t[0] > 0:
raise ValueError("t[0] must be less than or equal to 0")
#find the index of the first non-negative time point
t0_idx = np.where(t >= 0)[0][0]
y[t0_idx] = y0 # set the initial condition at t[0]
for i in range(t0_idx, steps - 1):
2025-06-01 21:05:24 +08:00
k1 = h * ODE(t[i], y[i])
k2 = h * ODE(t[i] + h / 2, y[i] + k1 / 2)
k3 = h * ODE(t[i] + h / 2, y[i] + k2 / 2)
k4 = h * ODE(t[i] + h, y[i] + k3)
y[i + 1] = y[i] + (k1 + 2 * k2 + 2 * k3 + k4) / 6
return y
def euler(f, a, b, y0, h):
xs = [a]
ys = [y0]
x = a
y = y0
while x < b:
y += h * f(x, y)
x += h
if abs(y) > threshold:
break
xs.append(x)
ys.append(y)
return xs, ys
def improvedEuler(f, a, b, y0, h):
xs = [a]
ys = [y0]
x = a
y = y0
while x <= b:
slope1 = f(x, y)
y_predictor = y + h * slope1
slope2 = f(x + h, y_predictor)
y = y + (h/2) * (slope1 + slope2)
x = x + h
if abs(y) > threshold:
break
xs.append(x)
ys.append(y)
return xs, ys
lims = [
2025-06-01 21:30:40 +08:00
(0, 1.55, 1.75, 1, threshold),
(1, 0.4, 0.6, 1, threshold),
(-1, 0.4, 0.6, -threshold, -1),
]
ODE = lambda t, y: t**3 + y**3
fig, axes = plt.subplots(3, 3)
col_titles = ["Euler's Method", "Improved Euler's", "Runge-Kutta"]
row_titles = ["y(0) = 0", "y(0) = 1", "y(0) = -1"]
# Add column titles
for col_idx, col_title in enumerate(col_titles):
axes[0][col_idx].set_title(col_title, fontsize=12)
for row_idx, row_title in enumerate(row_titles):
axes[row_idx][0].set_ylabel(row_title, fontsize=12, rotation=90, labelpad=20)
for idx, (y0, xm, xM, ym, yM) in enumerate(lims):
for h in [0.1, 0.01, 0.001, 0.0001]:
Te, Ye = euler(ODE, 0, xM, y0, h)
Ti, Yi = improvedEuler(ODE, 0, xM, y0, h)
Tr = np.linspace(0, xM, int((xM - 0)/h))
2025-06-01 21:05:24 +08:00
Yr = RK4(y0, Tr)
axes[idx][0].plot(Te, Ye, label=f'$\Delta t$={h}', linewidth=1)
axes[idx][1].plot(Ti, Yi, label=f'$\Delta t$={h}', linewidth=1)
axes[idx][2].plot(Tr, Yr, label=f'$\Delta t$={h}', linewidth=1)
for idy in range(3):
axes[idx][idy].set_xlim(xm, xM)
axes[idx][idy].set_ylim(ym, yM)
axes[idx][idy].legend()
fig.suptitle("Numeric Solutions for Each ODE Near the Asymptote")
plt.show()