feat: kutta, all numeric and all picard

This commit is contained in:
fracture-hikari 2025-06-01 20:37:10 +08:00
parent 1a7fd3adf6
commit 0b641bdaf7
3 changed files with 243 additions and 28 deletions

116
kutta.py Normal file
View File

@ -0,0 +1,116 @@
import numpy as np
import matplotlib.pyplot as plt
def RK_n(y0, t, n=4):
ODE = lambda t, y: t**3 + y**3
#note: t is a vector of time points, y0 is the initial value
steps = len(t)
y = np.zeros(steps)
h = (t[-1] - t[0]) / (steps - 1)
if t[0] > 0:
raise ValueError("t[0] must be less than or equal to 0")
#find the index of the first non-negative time point
t0_idx = np.where(t >= 0)[0][0]
y[t0_idx] = y0 # set the initial condition at t[0]
#forward RK
for i in range(t0_idx, steps - 1):
#n-th order Runge-Kutta method
k = np.zeros(n)
k[0] = h * ODE(t[i], y[i])
for j in range(1, n):
t_j = t[i] + h * (j / n)
y_j = y[i] + k[j - 1] / n
k[j] = h * ODE(t_j, y_j)
y[i + 1] = y[i] + np.sum(k) / n
#backward RK
for i in range(t0_idx - 1, -1, -1):
#n-th order Runge-Kutta method
k = np.zeros(n)
k[0] = h * ODE(t[i], y[i])
for j in range(1, n):
t_j = t[i] + h * (j / n)
y_j = y[i] + k[j - 1] / n
k[j] = h * ODE(t_j, y_j)
y[i] = y[i + 1] - np.sum(k) / n
return y
case_num = 3
if case_num == 1:
plt.title("RK4 result with IVPs for large t")
initial_values = [-1, 0, 1]
t = np.linspace(0, 2, 1000)
for i, y0 in enumerate(initial_values):
res = RK_n(y0, t, 4)
plt.plot(t, res, label=f'y(0)={y0}, n=4')
plt.ylim(-5,5)
#observation: the solutions diverge as t increases and seem to have an asymptote which depends on y(0)
# and converge to a same solution as t decreases.
elif case_num == 2:
plt.title("RK4 result with IVPs for small t")
initial_values = [-1, 0, 1]
t = np.linspace(-0.5, 0.5, 1000)
for i, y0 in enumerate(initial_values):
res = RK_n(y0, t, 4)
plt.plot(t, res, label=f'y(0)={y0}, n=4')
plt.ylim(-5,5)
elif case_num == 3:
plt.title("Comparing different order RK methods")
order = [1, 2, 4, 5]
t = np.linspace(-1, 1.4, 1000)
res_5 = RK_n(0, t, 5)
for n in order:
res = RK_n(0, t, n)
if n == 1:
label = 'Euler - RK5'
elif n == 2:
label = 'Improved Euler - RK5'
else:
label = f'RK{n} - RK5'
plt.plot(t, res - res_5, label=label)
plt.legend()
elif case_num == 4:
plt.title("RK4 with IVP from 0 to 1")
initial_values = np.linspace(0, 1, 5)
t = np.linspace(-3, 10, 1000)
for i, y0 in enumerate(initial_values):
res = RK_n(y0, t, 4)
plt.plot(t, res, label=f'y(0)={y0}')
plt.ylim(-5,10)
plt.legend()
elif case_num == 5:
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
plt.title("RK4 with different y-scale in the negatives")
scale = [5, 10, 20, 50]
t = np.linspace(-10, 1, 1000)
res = RK_n(0, t, 4)
for i, s in enumerate(scale):
ax = axs[i // 2, i % 2]
ax.plot(t, res / s, label=f'scale={s}')
ax.set_ylim(-1, scale[i])
ax.axhline(0, color='black', lw=0.5)
ax.axvline(0, color='black', lw=0.5)
ax.set_title(f'RK4 for t < {s}')
# observation: There is no asymptote in the negative y-scale
elif case_num == 6:
plt.title("RK4 with different step sizes")
steps = [5, 10, 100, 1000]
for n in steps:
t = np.linspace(0, 1, n)
res = RK_n(0, t, 4)
plt.plot(t, res, label=f'{n} steps')
plt.legend()
plt.axhline(0, color='black', lw=0.5)
plt.axvline(0, color='black', lw=0.5)
plt.show()
# plt.legend()

98
numeric.py Normal file
View File

@ -0,0 +1,98 @@
import numpy as np
import matplotlib.pyplot as plt
threshold = 100
def RK_n(y0, t: np.ndarray, n=4):
ODE = lambda t, y: t**3 + y**3
#note: t is a vector of time points, y0 is the initial value
steps = len(t)
y = np.zeros(steps)
h = (t[-1] - t[0]) / (steps - 1)
if t[0] > 0:
raise ValueError("t[0] must be less than or equal to 0")
#find the index of the first non-negative time point
t0_idx = np.where(t >= 0)[0][0]
y[t0_idx] = y0 # set the initial condition at t[0]
#forward RK
for i in range(t0_idx, steps - 1):
#n-th order Runge-Kutta method
k = np.zeros(n)
k[0] = h * ODE(t[i], y[i])
for j in range(1, n):
t_j = t[i] + h * (j / n)
y_j = y[i] + k[j - 1] / n
k[j] = h * ODE(t_j, y_j)
y[i + 1] = y[i] + np.sum(k) / n
return y
def euler(f, a, b, y0, h):
xs = [a]
ys = [y0]
x = a
y = y0
while x < b:
y += h * f(x, y)
x += h
if abs(y) > threshold:
break
xs.append(x)
ys.append(y)
return xs, ys
def improvedEuler(f, a, b, y0, h):
xs = [a]
ys = [y0]
x = a
y = y0
while x <= b:
slope1 = f(x, y)
y_predictor = y + h * slope1
slope2 = f(x + h, y_predictor)
y = y + (h/2) * (slope1 + slope2)
x = x + h
if abs(y) > threshold:
break
xs.append(x)
ys.append(y)
return xs, ys
lims = [
(0, 1.4, 1.8, 1, threshold),
(1, 0.4, 0.6, 1, threshold),
(-1, 0.4, 0.6, -threshold, -1),
]
ODE = lambda t, y: t**3 + y**3
fig, axes = plt.subplots(3, 3)
col_titles = ["Euler's Method", "Improved Euler's", "Runge-Kutta"]
row_titles = ["y(0) = 0", "y(0) = 1", "y(0) = -1"]
# Add column titles
for col_idx, col_title in enumerate(col_titles):
axes[0][col_idx].set_title(col_title, fontsize=12)
for row_idx, row_title in enumerate(row_titles):
axes[row_idx][0].set_ylabel(row_title, fontsize=12, rotation=90, labelpad=20)
for idx, (y0, xm, xM, ym, yM) in enumerate(lims):
for h in [0.1, 0.01, 0.001, 0.0001]:
Te, Ye = euler(ODE, 0, xM, y0, h)
Ti, Yi = improvedEuler(ODE, 0, xM, y0, h)
Tr = np.linspace(0, xM, int((xM - 0)/h))
Yr = RK_n(y0, Tr)
axes[idx][0].plot(Te, Ye, label=f'$\Delta t$={h}', linewidth=1)
axes[idx][1].plot(Ti, Yi, label=f'$\Delta t$={h}', linewidth=1)
axes[idx][2].plot(Tr, Yr, label=f'$\Delta t$={h}', linewidth=1)
for idy in range(3):
axes[idx][idy].set_xlim(xm, xM)
axes[idx][idy].set_ylim(ym, yM)
axes[idx][idy].legend()
fig.suptitle("Numeric Solutions for Each ODE Near the Asymptote")
plt.show()

View File

@ -188,35 +188,36 @@ def picardIteration(t0, y0, num_iters = 20):
return phi
lims = [
(0, 2, 0, 100),
(0, 1, 1, 100),
(0, 1, -1, 100)
(0, 2, 0, -1, 100),
(0, 1, 1, 0, 100),
(0, 1, -1, -100, 0)
]
num_iter = 6
t0, tM, y0, yM = lims[1]
tm, ym = min(t0, tM), min(y0, yM)
fig, axes = plt.subplots(2, 3)
for idx, (t0, tM, y0, ym, yM) in enumerate(lims):
tm = min(t0, tM)
picard_result = picardIteration(t0, y0, num_iter)
for idp, poly in enumerate(picard_result):
np_poly = np.vectorize(poly)
ts = np.linspace(t0, tM, 1000)
ys = np_poly(ts)
axes[0][idx].plot(ts, ys, label=f'#{idp} iteration')
axes[0][idx].legend()
axes[0][idx].set_xlim(tm, tM)
axes[0][idx].set_ylim(ym, yM)
#last iter coeffs
axes[1][idx].scatter(list(range(poly.degree + 1)), poly.coefficients, s=0.5)
axes[1][idx].set_yscale('log')
picard_result = picardIteration(t0, y0, num_iter)
'''
for idx, poly in enumerate(picard_result):
np_poly = np.vectorize(poly)
ts = np.linspace(t0, tM, 1000)
ys = np_poly(ts)
plt.plot(ts, ys)
print(idx, poly.degree, poly)
'''
poly = picard_result[-1]
#np_poly = np.vectorize(poly)
#ts = np.linspace(t0, tM, 1000)
#ys = np_poly(ts)
#plt.plot(ts, ys)
#print(poly.degree, poly)
print(poly.degree)
plt.scatter(list(range(poly.degree + 1)), poly.coefficients, s=0.5)
plt.yscale('log')
#plt.xlim(t0, tM)
#plt.ylim(ym, yM)
plt.title(f"coefficients of $\\sum c_n t^n$ at y(0) = {y0} of iterations {num_iter}")
plt.ylabel("$c_n$")
plt.show()
col_titles = ["y(0) = 0", "y(0) = 1", "y(0) = -1"]
row_titles = ["plots of solutions", "coefficients for $t^n$"]
# Add column titles
for col_idx, col_title in enumerate(col_titles):
axes[0][col_idx].set_title(col_title, fontsize=12)
for row_idx, row_title in enumerate(row_titles):
axes[row_idx][0].set_ylabel(row_title, fontsize=12, rotation=90, labelpad=20)
plt.show()